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Abstract. In 1994, the International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer (ICG-HNPCC) es-
tablished an international database of mutations identified in families with Lynch (HNPCC) syndrome. The data are publicly
available at http://www.nfdht.nl. The information stored in the database was systematically analyzed in 1997, and at that time,
126 different predisposing mutations were reported affecting the DNA mismatch repair genes MSH2 and MLH1 and occurring
in 202 families. In 2003, the ICG-HNPCC and the Leeds Castle Polyposis Group (LCPG) merged into a new group, INSiGHT
(International Society for Gastrointestinal Hereditary Tumors). The present update of the database of DNA mismatch repair gene
mutations of INSiGHT includes 448 mutations that primarily involve MLH1 (50%), MSH2 (39%), and MSH6 (7%) and occur in
748 families from different parts of the world.
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1. Introduction

Hereditary nonpolyposiscolorectal cancer (HNPCC,
Lynch syndrome) is a multi-organ cancer syndrome
that is associated with heritable defects in DNA mis-
match repair (MMR). Mutations in four MMR genes,
MSH2, MLH1, MSH6, and PMS2, have been convinc-
ingly linked to HNPCC susceptibility (Table 1). Two
further genes, MLH3 and PMS1, have also been im-
plicated in HNPCC predisposition, but their roles are
less clear. Germline mutations in MMR genes give
rise to characteristic clinical phenotypes, including a
defined spectrum of cancers that show microsatellite
instability (MSI) as a manifestation of MMR deficien-
cy [22]. Apart from MMR genes, HNPCC-like phe-
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notypes in occasional families may be due to germline
mutations in a variety of other genes, including the APC
gene variants I1307K and E1317Q [9], TGFβRII [21],
CHD1 [30], EXO1 [44], and MYH [2]. With rare ex-
ceptions (EXO1), tumors from such families do not dis-
play MSI. As HNPCC is traditionally viewed as a MMR
deficiency syndrome, the latter genes are not included
in the present review or in the mutation database.

Information of mutations and polymorphisms detect-
ed in the MMR genes listed in Table 1 are available
in the database maintained by the previous Internation-
al Collaborative Group on Hereditary Nonpolyposis
Colorectal Cancer (ICG-HNPCC), current INSiGHT.
Since the establishment of the database in 1994, the
data deposited in it (available at http://www.nfdht.nl)
have steadily increased from 126 mutations in the orig-
inal report [28] to 448 mutations at present. Individual
investigators have contributed most of the information
(an electronic mutation submission form is available at
the Internet address given above); the rest has been re-
trieved from published literature reports. While a ma-
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Table 1
HNPCC-associated human MMR genes

Gene Chromosomal location No. of exons

MSH2 2p21 16
MLH1 3p21-23 19
MSH6 2p21 10
PMS2 7p22 15
MLH3 14q24.3 12
PMS1 2q31-q33 Not determined

Table 2
Number of mutations considered pathogenic that have been
deposited in the ICG-HNPCC/INSiGHT mutation database
(http://www.nfdht.nl) as of July 31st, 2003

Gene Number of mutations (%)

MSH2 175 (39%)
MLH1 225 (50%)
MSH6 32 (7%)
PMS2 5 (1%)
MLH3 16 (3%)
PMS1 1 (< 1%)
Total 448 (100%)

jority of initial submissions focused on unequivocally
pathogenic changes (nonsense or frameshift mutations)
that were present in large HNPCC families, an increas-
ing proportion of mutations currently deposited consist
of single amino acid substitutions (missense changes)
that occur in small or atypical families. Although
the database information is not intended for diagnostic
use, it provides useful background data for both clini-
cians and basic researchers, and proper assignment of
pathogenicity is therefore an important challenge for
both the depositors and users of the database.

2. Mutations and polymorphisms

As of July 31, 2003 the database contains infor-
mation of 448 germline alterations that are likely to
be pathogenic and are referred to as mutations (Ta-
ble 2). Of these, 50% affect MLH1, 39% MSH2, and
7% MSH6, while the share of the remaining genes is
less than 5%. According to available reports, germline
mutations in PMS2 are rare in classical HNPCC fam-
ilies [20] and are primarily associated with the Turcot
syndrome variant [4,14,23]. The role of MLH3 as an
HNPCC susceptibility gene relies on two population-
based reports, one based on Dutch [45] and the other
one on Swedish [19] HNPCC or colon cancer families.
Among a total of 16 germline variants that were absent
in the normal population, only 2 were frameshift muta-
tions, whereas the remaining ones were of the missense
type with uncertain pathogenic significance. Moreover,

while some MLH3 mutations showed co-segregation
with disease in the families studied, others did not [19].
More data are clearly needed for a reliable evaluation
of the significance of MLH3 in HNPCC predisposition.
Finally, a single PMS1 germline mutation has been re-
ported [25], a nonsense mutation occurring in a patient
with colon and other cancers from a family meeting the
Amsterdam I criteria for HNPCC [34]. However, re-
examination of the same family revealed an additional
mutation in MSH2 (large deletion encompassing ex-
ons 1–7), and only the MSH2 mutation co-segregated
with colon cancer [20]. Thus, there is presently no
convincing evidence that germline mutation of PMS1
causes predisposition to HNPCC-type cancers; howev-
er, a possible role of PMS1 as a susceptibility gene for
some other cancers cannot be excluded [20].

The 448 MMR gene alterations detected in the
germline to date occur in 748 families from different
parts of the world (Table 3). While most MSH2- and
MLH1-associated families meet the stringent Amster-
dam I criteria for HNPCC, mutations in the remaining
genes are mainly associated with Amsterdam I-negative
families.

In addition to sequence changes considered
pathogenic, the database also contains information of
apparently nonpathogenic sequence variants and poly-
morphisms. Emphasis is given on those variants for
which allele frequencies in the population have been
determined. The database currently lists 108 non-
pathogenic alterations (28 for MSH2, 27 for MLH1, 43
for MSH6, 5 for PMS2, and 5 for MLH3).

It may be difficult to determine the pathogenicity of
missense and in-frame alterations as well as some splice
changes. A few changes have been reported both as
pathogenic mutations and as innocuous sequence vari-
ants to the database (G322D in MSH2, and V326A and
K618A in MLH1). For missense mutations, the most
important theoretical criteria in support of pathogenic-
ity include nonconservative nature of the amino acid
change, evolutionary conservation of the amino acid,
absence in the normal population, cosegregation with
disease, and association with MSI or lack of specific
protein in tumor tissue. Most missense mutations of
MSH2 and MLH1 meet one or several of these criteria.
For mutations for which functional data are available [6,
11,12,16,27,31,33] there is generally a good agreement
between theoretical predictions and functional classifi-
cation.
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Table 3
Fulfilment (+ or −) of Amsterdam I criteria among families associated with
MMR gene mutations

Number of associated families
Gene Amsterdam I+ Amsterdam I− Not specified Total (%)

MSH2 143 92 50 285 (38%)
MLH1 253 71 77 401 (54%)
MSH6 7 26 4 37 (5%)
PMS2 1 4 0 5 (< 1%)
MLH3 0 19 0 19 (3%)
PMS1 1 0 0 1 (< 1%)
Total 405 (54%) 212 (28%) 131 (18%) 748 (100%)

3. Sites and types of mutation

The exonic distribution of germline mutations along
the MSH2, MLH1, and MSH6 genes is shown in Fig. 1.
As a rule, the mutations are scattered throughout the
genes, with some hot spot areas in exons 12 and 3
for MSH2, exons 16 and 1 for MLH1, and exon 4
(the largest exon) for MSH6. Apart from exons and
intron/exon borders, a few point mutations have been
identified in the promoter regions of MSH2 [32] and
MLH1 [10], and at least for some, functional data are
available to support their pathogenicity.

A majority of HNPCC-associated MMR gene alter-
ations are frameshift or nonsense mutations that lead
to truncated proteins (Fig. 2). For MLH1 and MSH6,
missense mutations are also common constituting more
than one-third of all mutations in these genes. Most
alterations observed in MLH3 in HNPCC- or HNPCC-
like families are of the missense type. Pathogenicity
of HNPCC-associated mutations typically results from
the loss of important interaction domains (truncating
mutations) or changes in the local structure or confor-
mation (missense mutations) that impair the ability of
the proteins to interact with their partners or other com-
ponents of the MMR pathway, or otherwise properly
accomplish MMR or other functions these proteins are
responsible for [7,15].

4. Unique vs. recurrent mutations and the role of
ethnicity

Most mutations reported to the database (362/448,
81%) are unique, i.e. specific to each family. This
observation together with the fact that the mutations are
distributed throughout the genes (see above) means that
for the detection of a predisposing mutation in a new
family, the entire genes generally need to be screened.
However, a few recurrent mutations are known that
occur in HNPCC families all over the world (Table 4).

Yet, the overall share of the three most common MSH2
and MLH1 mutations, if counted together, is only 13%
of all mutation-positive families (95/748).

Typically, recurrent mutations arise de novo in dif-
ferent background haplotypes. However, some are as-
sociated with shared haplotypes between different fam-
ilies suggesting a common ancestral origin (founding
mutations). Founding mutations are characteristic of
isolated populations, such as the Ashkenazi Jews or
Finns, and provide important targets for mutation di-
agnostics in these particular populations. Thus, a mis-
sense mutation (G>C at nucleotide 1906 in exon 12
of MSH2, designated as A636P) accounts for one-third
of HNPCC in Ashkenazi Jewish families that fulfil the
Amsterdam criteria I [34] or II [37]; it is infrequent or
absent in other populations [8]. Similarly, two found-
ing mutations in MLH1, a 3.5-kb genomic deletion af-
fecting exon 16 (“Mutation 1”) and a splice acceptor
site mutation (g>a at 454-1) of exon 6 (“Mutation 2”),
together account for 63% of all mutations identified in
Finnish HNPCC families [24,26]. So far, neither of
these two mutations has been shown to occur in families
of non-Finnish origin. Recently, a genomic deletion
encompassing MSH2 exons 1–6 was found to represent
a founder mutation among North American kindreds,
accounting for 10% of the studied cohort [39]. In anal-
ogy to the Finnish MLH1 “Mutation 1”, breakpoint
analysis suggested the origin of the MSH2 deletion as
a result of Alu-mediated recombination. Finally, some
mutations may arise de novo in some populations and
represent founding mutations in others. For example,
the recurrent MSH2 intron 5 splice site mutation (Ta-
ble 4) has multiple origins based on haplotype analysis
with MSH2-linked markers, but is a founding mutation
in Newfoundland, Canada [5].

5. Genotype-phenotype correlations

Based on available information, classical HNPCC is
mostly associated with mutations in MSH2 or MLH1
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Fig. 1. (a-c). Distribution of germline mutations in different exons of the MMR genes.

(often referred to as “major” MMR genes) especial-
ly in families that meet the Amsterdam criteria, and
mutations in these genes or MSH6 in families that do
not meet these criteria (Table 3). In the Muir-Torre
variant, which is characterized by the occurrence of
sebaceous gland tumors together with HNPCC-type
malignancy, MSH2 is primarily affected (ref. 18 and
http://www.nfdht.nl). The genetic basis of Turcot syn-

drome (featured by the coexistence of primary brain tu-
mor and colorectal adenoma or carcinoma) is heteroge-
neous and involves the MMR genes MLH1 and PMS2
or the APC gene (ref. 14 and http://www.nfdht.nl).

Consistent with the observed vertical transmission
of cancer susceptibility in HNPCC families (autosomal
dominant inheritance), one copy of a MMR gene is mu-
tant and the other one wild type in the germline of any
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Fig. 2. (a-e). Types of germline mutations in HNPCC-associated MMR genes.

individual who has inherited the susceptibility. Rare
instances of homozygosity [29,38,40,41] or compound
heterozygosity [4,13] for MMR gene mutations have
been described. Homozygosity for MLH1 or MSH2
mutations is associated with atypical tumor spectrum
(hematological malignancy and neurofibromatosis type
1) as well as constitutional mutator phenotype. An in-
dividual heterozygous for two missense mutations in
MLH1 developed breast cancer at age 35 combined
with constitutional mutator phenotype, but showed no
colon cancer at the time of the latest observation (45
years) [13]. Another individual heterozygous for two
truncating PMS2 mutations had a Turcot phenotype and
microsatellite instability in both normal and tumor tis-
sue [4]. Remarkably, the parents, who both carried one
PMS2 mutation, were clinically unaffected, suggesting
recessive inheritance in this exceptional case.

Table 5 summarizes the characteristic clinical fea-
tures and MSI status associated with mutations in the

different MMR genes. Families with MSH2 or MLH1
mutations mainly display typical HNPCC and high-
degree of MSI in tumors (for “grading” of MSI, see
ref. 3). Furthermore, compared to carriers of MLH1
mutations, MSH2 mutation carriers appear to be at
higher risk for extracolonic cancers [36] and their life-
time risk of developing any cancer may be higher [35].
MSH6 mutations are often associated with atypical
HNPCC (characterized by small family size, atypical
tumor spectrum, late age at onset, and reduced pene-
trance) with high- or low-degree MSI in tumors [1,17,
42,43]. Moreover, families with MSH6 mutations have
a higher risk of developing endometrial cancer than
families with MSH2 or MLH1 mutations [42]. Carri-
ers of PMS2 mutations usually show features of Turcot
syndrome and – as mentioned [4] – the penetrance of
mutations may vary. Finally, as a rule, families with
MLH3 mutations do not fulfil the Amsterdam criteria,
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Table 4
The most common recurrent mutations that occur in HNPCC families worldwide (irrespective of ethnic origin)

Mutation Consequence No. of associated families

MSH2
a>t at nt. 942+ 3 (intron 5) Deletion of exon 5 (in frame) 42
Del AAT at nt. 1786, codon 596 (exon 12) Deletion of an amino acid (Asn) (in frame) 8
C>T at nt. 2038, codon 680 (exon 13) Arg>stop (nonsense) 7

MLH1
Del AAG at nt. 1846, codon 616 (exon 16) Deletion of an amino acid (Lys) (in frame) 20
C>T at nt. 350, codon 117 (exon 4) Thr>Met (missense) 10
AA>GC at nt. 1852, codon 618 (exon 16) Lys>Ala missense 8

Table 5
Clinical and MSI phenotypes associated with germline mutations in MMR genes

Gene Clinical phenotype MSI phenotype

MSH2 Mostly typical HNPCC, also a major Muir-
Torre gene.

MSI-High

MLH1 Mostly typical HNPCC. MSI-High
MSH6 Typical (minority) or atypical HNPCC (ma-

jority) with frequent endometrial cancers.
MSI-High or MSI-Low

PMS2 Turcot syndrome. MSI-High
MLH3 Atypical HNPCC. Variable (from MSI-High to no MSI)

and MSI in tumors varies from high-degree MSI [45]
to stable microsatellite sequences [19].

6. Conclusion

During its almost a decade of existence, the ICG-
HNPCC/INSiGHT mutation database has established
its position as an important repository of information
for both clinicians and researchers. Knowledge of mu-
tations predisposing to HNPCC provides the basis for
studies of mutation mechanisms and consequences, the
design of diagnostic strategies, and increased under-
standing of genotype-phenotype correlations.
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